Section 5.4: Mechanical vibrations

Vocabulary:

- simple harmonic motion
- Amplitude, frequency, phase angle
- Damping: underdamped, overdamped, critical

We learn:

- Hooke's law for springs.
- How to model s.h.m. with a differential equation, including damping.
- How to express s.h.m. with a single cosine function

We don't need to know:

- circular frequency (rather than frequency)
- time lag (bottom of page 305
- formulas for frequency and period (p. 304-5)
- pseudofrequency, pseudoperiod
- time-varying amplitude
- the derivation of s.h.m. as an approximation for the motion of a pendulum

Page 311 question 4.
A body of mass 250 g is attached to the end of a spring that is stretched by 25 cm by a force of 9 N . At $\mathrm{t}=0$ the body is pulled 1 m to the right and set in motion with $v _0=5 \mathrm{~m} / \mathrm{s}$ to the left.
a. Find the position $x(t)$ of the body at time t in the form $C \cos \left(\omega_{0} t-\alpha\right)$
b. Find the amplitude and period (and frequency) of the motion.

Solution

Hooke's law: the force a spring pulls with is proportional to displacement.

Thus if 9 N are needed to pull it. 25 m then $4 \cdot 9 N=36 N$ are needed to pull it 1 m .
Force $F=-k x$. Here $k=36 \mathrm{~N} / \mathrm{m}$ Differential equation.

$$
\text { Force }=m x^{\prime \prime}=-k x
$$

Here $0.25 x^{\prime \prime}+36 x=0, x^{\prime \prime}+144 x=0$
Char. eq, $r^{2}+144=0, r= \pm 12 i$
General solution: $x=A \cos (12 t)+B \sin (12 t)$
Find A and B.
When $t=0 \quad x_{0}=x(0)=1=A$

$$
\begin{aligned}
& x^{\prime}(t)=-12 A \sin 12 t+12 B \cos 12 t \\
& x^{\prime}(0)=v_{0}=5=12 B \quad B=-5 / 12 \\
& \text { Solution: } x=\cos 12 t-\frac{5}{12} \sin 12 t
\end{aligned}
$$

Solution: $x(t)=\cos (12 t)-(5 / 12) \sin (12 t)$
The period is the time taken 10 complete one uncle
The frequencyer at $12 t=2 \pi, t=\frac{2 \pi}{12}$
The frequmencyer cycles per time interval
We write the solution in the form
$C \cos \left(\omega_{0} t-\alpha\right) \quad \omega_{\Delta} / 2 \pi$ is the frequency α is called the phase angle
Use the identity $\cos (A+B)=\cos A \cos B-\sin A \sin B$ see next page for a comment.

Take $B^{\prime}=12 t$. Choose C and A so
that $C \cos A=1$ and $C \sin A=5 / 12$
To do this, note: $(C \cos A)^{2}+(C \sin A)^{2}$

$$
\approx C^{2}=1^{2}+\left(\frac{5}{12}\right)^{2}=\frac{12^{2}+5^{2}}{12^{2}}=\frac{13^{2}}{12^{2}}
$$

$C=\frac{13}{12}$ is the amplitude.
$x^{\prime}(t)=-13 \sin (12 t-\alpha), x^{\prime}(0)=-13 \sin (-\alpha)$
$A\left(s 0 \frac{\cos A}{C \cos A}=\frac{5 / 12}{1}=\frac{5}{12}=\tan A\right.$

$$
\begin{aligned}
& A=\tan ^{-1}\left(\frac{5}{12}\right) \\
& x(t)=C(\cos A \cos 12 t \sim \sin A \sin (2 t) \\
& =\frac{13}{12} \cos (A+12 t) \approx \frac{13}{12} \cos (12 t-\alpha)
\end{aligned}
$$

Where $\alpha=-\tan ^{-1} 5 / 12$
Question: which quadrant does the phase angle lie in?
a. 1
b. 2
c. 3
d. 4

$4 /$| 2 | 1 |
| :--- | :--- |
| 3 | 4 |

Question: which is the correct graph of $x(t)$?

Alack $\sqrt{\text { B blue }}$ identify blue atleit usingdedrivabive

In deriving how to write $x(t)=\cos (12 t)-(5 / 12) \sin (12 t)$ in the form $\mathrm{C} \cos$ (omega t -alpha) it would have been better to use the identity $\cos (A-B)=\cos A \cos B+\sin A \sin B$ because this deals with the minus signs better.

Let $A=12 t$ here and $B=$ alpha. We try to find C and B so that $C \cos B=1$ and $C \sin B=$ $-5 / 12$

We get

$$
\begin{aligned}
C^{2} & =C^{2} \cos ^{2} A+C^{2} \cos ^{2} B \\
& =1+(-5 / 12)^{2}=\left(\frac{13}{12}\right)^{2}
\end{aligned}
$$

so $C=\frac{13}{12}$
and $\tan B=\frac{\operatorname{csin} B}{C \cos B}=\frac{-5 / 12}{1}=-\frac{5}{12}$

Thus $x(t)=\frac{13}{12} \cos \left(12 t-\tan ^{-1}\left(-\frac{5}{12}\right)\right)$

Page 312 question 19.
A mass m is attached to both a spring (with spring constant k) and a dash pot (with damping constant c). The mass has initial position $x _0$, initial velocity $v _0$. Find the position function $x(t)$ and determine whether the motion is overdamped, critically damped, or underdamped.

$$
m=4, c=20, k=169, x _0=4, \quad v _0=16
$$

force $-k x \longleftarrow m$
Equation Force $=m_{x^{\prime \prime}}=-k x-c x^{\prime}$
Here $4 x^{\prime \prime}+20 x^{\prime}+169=0$

$$
\begin{aligned}
& 4 r^{2}+20 r+169=0 \\
& \text { roots } r=-\frac{5}{2} \pm 6 i
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=e^{-5 / 2 t}(A \cos 6 t+B \sin 6 t) \\
& x(0)=A=4, \quad x^{\prime}(t)=-\frac{5}{2} e^{-5 / 2 t}(A \cos 6 t+B \sin 6 t) \\
& \quad+e^{-5 / 2 t}(-6 A \sin 6 t+6 B \cos 6 t) \\
& x^{\prime}(0)=-\frac{5}{2} A+6 B=16, B=13 / 3 \\
& x(t)=e^{-5 / 2 t}\left(4 \cos 6 t+\frac{13}{3} \sin 6 t\right)
\end{aligned}
$$

Without the $e^{-5 / 2 t}$ term the amplitude is $C=\sqrt{4^{2}+\left(\frac{13}{3}\right)^{2}}=\frac{\sqrt{313}}{3}$

$$
\gamma(t)=e^{-5 / 2 t} \frac{\sqrt{313}}{3} \log (6 t \sim \alpha)
$$

where $\tan (\alpha)=\frac{13 / 3}{4}=\frac{13}{12}$
See next page.

The last question says more than this. In brief:
Page 312 question 19.
A mass m is attached to both a spring (with spring constant k) and a dash pot (with damping constant c). The mass has initial position $\mathrm{x} _0$, initial velocity $v _0$. Find the position function $\mathrm{x}(\mathrm{t})$ and determine whether the motion is overdamped, critically damped, or underdamped.

Write $x(t)$ in the form C_1 e^\{-pt\} \cos (omega t - alpha).
Also, if we put $\mathrm{c}=0$ find the corresponding function $u(t)=C_{-} 0 \cos ($ omega $t-$ alpha).

$$
m=4, c=20, k=169, x _0=4, v _0=16
$$

We got underdamping.

Our solution was

$$
\begin{aligned}
& x(t)=e^{-\frac{5 t}{2}}\left(4 \cos 6 t+\frac{13}{3} \sin 6 t\right) \\
& \text { Amplitude }=\sqrt{4^{2}+\frac{132}{32}}=\frac{\sqrt{313}}{3}\left(\text { withouthe } e^{\left.-\frac{5 t}{2}\right)}\right. \\
& x(t)=\frac{\sqrt{313}}{3} e^{-5 t / 2\left(\frac{12}{\sqrt{313}} \cos 6 t+\frac{13}{\sqrt{313}} \sin 6 t\right)} \\
& =\frac{\sqrt{313}}{3} e^{-5 t / 2} \cos (6 t-0.8254) \\
& \frac{.8254}{6}
\end{aligned}
$$

Extra material with page 312 question 19:
We just did
$\mathrm{m}=4, \mathrm{c}=20, \mathrm{k}=169, x_{-} 0=4, \mathrm{v} _0=16$
With equation

$$
4 x^{\prime \prime}+20 x^{\prime}+169 x=0
$$

Next we do the same, but with $k=16$.
This means the spring is weaker.

$$
\begin{aligned}
& 4 x^{\prime \prime}+20 x^{\prime}+16 x=0 \\
& 4 r^{2}+20 r+16=0 \\
& 4\left(r^{2}+5 r+4\right)=0 \\
& 4(r+1)(r+4)=0 . \text { Roots } r=-1,-4
\end{aligned}
$$

General solution $x(t)=A e^{-t}+B e^{-4 t}$
Apply in itial condituins:

$$
x(t)=10 \frac{2}{3} e^{-t}-6 \frac{2}{3} e^{-4 t}
$$

There is no oscillation. The roots are real. This is called overdamping.

We just did
$m=4, c=20, k=169, x_{-} 0=4, v _0=16$
with equation
$4 x^{\prime \prime}+20 x^{\prime}+169 x=0$.
Then $\mathrm{m}=4, \mathrm{c}=20, \mathrm{k}=16, \mathrm{x} _0=4, \mathrm{v} _0=16$ with equation

$$
4 x^{\prime \prime}+20 x^{\prime}+16 x=0
$$

Now we do $m=4, c=20, k=25, x _0=4, v _0=16$ with equation

$$
4 x^{\prime \prime}+20 x^{\prime}+25 x=0
$$

$$
(2 r+5)^{2}=0, \quad r=-\frac{5}{2} \text { twice }
$$

General solution

$$
\begin{aligned}
x(t) & =A e^{-5 / 2 t}+B t e^{-5 / 2 t} \\
A & =4 \quad B=16
\end{aligned}
$$

This provides minimal damping without oscillation. The roots are real and repeated. This is critical damping.

For motion $x(t)=3 \cos (5 t)-4 \sin (5 t)$
A. what is the period? $\quad 2 \pi / 5$
B. what is the frequency? $5 / 2 \pi$
C. what is the amplitude? 5
a. 5
b. $2 \pi / 5$
c. $5 / 2 \pi$
d. $1 / 5$
e. 4

Summary:

1. Under-damped: the characteristic equation has
a. distinct real roots
b. repeated real roots
c. non-real complex conjugate roots
2. Over-damped: the characteristic equation has
a. distinct real roots
b. repeated real roots
c. non-real complex conjugate roots
3. Critically damped: the characteristic equation has
a. distinct real roots
b. repeated real roots
c. non-real complex conjugate roots
